Title page for ETD etd-11162005-160340


Type of Document Dissertation
Author Zhao, Weichang
Author's Email Address wzhao3@lsu.edu
URN etd-11162005-160340
Title STM and ARPES Studies of Epitaxial Multilayer Ag on Cu(110) and Ni(110)
Degree Doctor of Philosophy (Ph.D.)
Department Physics & Astronomy
Advisory Committee
Advisor Name Title
Phillip T. Sprunger Committee Chair
Richard L. Kurtz Committee Co-Chair
A. Ravi P. Rau Committee Member
David P. Young Committee Member
John Scott Dean's Representative
Keywords
  • Ag
  • ARPES
  • STM
  • Ni(110)
  • Cu(110)
  • Self-Assembly
  • Epitaxy
  • atomically-flat film
  • nanowire
Date of Defense 2005-11-03
Availability unrestricted
Abstract
Ag nanostructures of multilayer coverages (< 30 monolayers) epitaxially self-assembled on Cu(110) and Ni(110) have been explored by scanning tunneling microscopy (STM), angle-resolved photoelectron emission spectroscopy (ARPES), and low energy electron diffraction (LEED). We have studied varied nanostructure morphologies self-assembled depending on different deposition/annealing processes and coverages, their atomic structures, growth behaviors and mechanisms, and the electronic structures of nanowires.

At nominal coverages of 1.2 ML < < ~10 ML, there are two epitaxial structures on Cu(110) and Ni(110). One is a Ag(110) multilayer film, which has a superstructure with lateral periodic units of eight and three/four substrate lattice constants along [110] and along [001] respectively. Another is that of Ag(110) nanowires surrounded by pseudohexagonal Ag(111) monolayer. The Ag(110) nanowires are triangular in cross section. The two side surfaces are faceted and the long axis is atomically straight along [110]. Typical lengths are within the range of 100 ~ 5000 , widths 70 ~ 300 , side slopes 10 ~ 30, and heights 5 ~ 60 . The Ag nanowires present extraordinary anisotropy with observed aspect ratios (length:width) of up to 20:1. The Ag(110) nanowires are in-registry with the substrate along [001], but not along [110].

At coverages of ~ 10 ML < < ~25 ML, there also exist two different nanostructures, the nanowires and a Ag(110) atomically-flat film with some pits as deep as down to the substrate and a one-dimensional quasiperiodic superstructure along [001]. There are two basic separations of the superstructural stripes: one is three lattices wide (~11 ) and the other is two lattices wide (~7 ). Both of nanostructures are stable at temperature up to at least 200 C and not inter-transformable. The growth of the nanowires is driven by the elastic strain mechanism, but the growth of the atomically-flat film is driven by electronic growth mechanism originated from the electron quantum confinement in the vertical direction of the film. The ARPES of the nanowires shows dispersion in the vertical and the [110] directions, but no dispersion in the [001] direction because of the limited width (~ 200 ).

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Zhao_dis.pdf 9.18 Mb 00:42:31 00:21:52 00:19:08 00:09:34 00:00:48

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.