Title page for ETD etd-11042008-200745

Type of Document Master's Thesis
Author Gonzalez, Diego F.
Author's Email Address dgonza7@lsu.edu, diego.gonzalez.j@gmail.com
URN etd-11042008-200745
Title Magnetic Field Effects on Diffusion Flames
Degree Master of Science in Mechanical Engineering (M.S.M.E.)
Department Mechanical Engineering
Advisory Committee
Advisor Name Title
Charalampopoulos, Tryfon Committee Chair
Mendrela, Ernest Committee Member
Wahab, Muhammad Committee Member
  • soot
  • agglomerates
  • emission reduction
  • diffusion flames
  • magnetic field
  • combustion
  • finite element magnetic methods
Date of Defense 2008-10-21
Availability unrestricted
Magnetic field effects in combustion is an area of study that has previously been overlooked. The influence of magnetic fields on flames has only recently been explored and is of interest both from a scientific and a practical standpoint. This study provides theoretical, numerical and experimental evidence that combustion can be affected with the use of suitable magnetic fields. This thesis focuses on four different types of magnetic field: homogeneous, gradient, oscillating and pre-combustion.

For the homogeneous field case, the Gibbs Free Energy method was used to determine the mole fraction of product species. It was found that homogeneous fields have negligible effects on combustion characteristics. Different magnetic gradient configurations were then tested using Finite Element Methods to obtain the force field profile on paramagnetic oxygen. Numerical simulations showed that high magnetic field gradients at high magnetic strengths, such as those exerted by spherical permanent magnets, are most suitable to enhance oxygen entrainment into a reaction zone. Also, from experimental data, it was shown that the concentration of oxygen around a diffusion flame has a higher increase if the momentum of the flame jet exit is low. Furthermore, a digital imagery study quantitatively demonstrated that soot particle agglomeration is decreased with the use of gradient magnetic fields.

Experimentations with oscillating magnetic fields confirmed that an alternating magnetic field produces a varying force field around a diffusion flame, which enhances mixing between fuel and oxidizer. Finally, pre-combustion magnetic fields increased the temperature on the lower portion of a diffusion flame suggesting possible dissociation of the fuel molecules resulting in more complete combustion.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Gonzalez_thesis.pdf 17.78 Mb 01:22:18 00:42:19 00:37:02 00:18:31 00:01:34

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.