Title page for ETD etd-11042005-161219

Type of Document Master's Thesis
Author Lee, Yong-Jae
Author's Email Address ylee3@lsu.edu
URN etd-11042005-161219
Title Oxidation of Sugarcane Bagasse Using a Combination of Hypochlorite and Peroxide
Degree Master of Science (M.S.)
Department Food Science
Advisory Committee
Advisor Name Title
Donal F. Day Committee Chair
J. Samuel Godber Committee Member
Marlene E. Janes Committee Member
  • degradation
  • chemical oxidations
  • enzyme
Date of Defense 2005-10-28
Availability unrestricted
Sugarcane bagasse is a source of lignocellulosic biomass. It is a potential renewable energy source for ethanol production. It is naturally cheap, plentiful and has high cellulose content. The sugarcane bagasse contains 34.5% cellulose, 24% hemicellulose, and 22-25% lignin.

Reactive Oxygen Species (ROS), singlet oxygen (1O2), superoxide (O2-), hydroxyl radicals (OH?, and hypochlorite ion (OCl-), were found to remove both hemicellulose and lignin from sugarcane bagasse. Ox-B (Day. 2004, US Patent 6,866,870), a solution of sodium hypochlorite and hydrogen peroxide, was studied for its effectiveness as a pretreatment for lignocellulosic biomass. The cellulose structure of the bagasse was easily separated from the hemicellulose and lignin by filtration after Ox-B treatment. The remaining solids on a wet basis, were 76.2% digestible by cellulases, after a 20:1 treatment (v/w) with an Ox-B solution (10,000 ppm sodium hypochlorite : 500 ppm hydrogen peroxide). At a constant pH 8, 38.6% weight loss and 97.4% cellulose digestibility were observed. Temperature did not affect weight loss or cellulose digestibility. Above a 2% Ox-B treatment, cellulose digestibility was 100%. Cellulose digestibility increased with time for up to 3 h on treatment with Ox-B. Sequential treatments improved cellulose digestibility at lower concentrations of Ox-B. Treatment with Ox-B followed by a caustic wash produced solids that were between 80 and 100% digestible by cellulases.

Our studies indicate that Ox-B is a powerful room temperature chemical oxidant that increases cellulose digestibility of sugarcane bagasse. Oxidation of bagasse, by sequential Ox-B treatments for 30 min, at a pH of 8 and room temperature, followed by a caustic wash may have industrial potential.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Lee_thesis.pdf 1.60 Mb 00:07:25 00:03:49 00:03:20 00:01:40 00:00:08

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.