Title page for ETD etd-0903102-111626


Type of Document Dissertation
Author Pahl, James Wesley
URN etd-0903102-111626
Title The Combined Effects of Salinity and Sulfide on the Growth and Physiology of the Freshwater Marsh Plant Panicum Hemitomon J.A. Schultes
Degree Doctor of Philosophy (Ph.D.)
Department Oceanography and Coastal Sciences
Advisory Committee
Advisor Name Title
Irving A. Mendelssohn Committee Chair
David J. Lonstreth Committee Co-Chair
James V. Moroney Committee Member
Karen L. McKee Committee Member
Charles A. Wilson Dean's Representative
Ray Ferrell Dean's Representative
Keywords
  • adaptation
  • adventitious roots
  • Louisiana
  • saltwater intrusion
  • respiration
  • fermentation
Date of Defense 2002-04-10
Availability unrestricted
Abstract
Vegetative response to saltwater intrusion into coastal freshwater wetlands is governed by the combined effects of increased salinity and porewater sulfide concentrations. I conducted a series of experiments to address the primary hypothesis that growth of Panicum hemitomon is adversely affected by an interaction between salinity and sulfide stresses associated with saltwater intrusion, and the mechanisms for decreased growth are alterations in the metabolic and morphological adaptations needed for a plant to survive in a flooded environment.

I exposed marsh sods to a factorial treatment arrangement of three salinities (0, 2, and 4 ppt) and three porewater sulfide concentrations (0, 0.5 and 1 mM) for 19 and 39 weeks. While salinity and sulfide both decreased relative growth rates in P. hemitomon, the salinity-induced growth inhibitions were more severe, particularly with regards to the belowground tissue. Additionally, there was a sulfide-induced stimulus in the production of adventitious tissue that was completely inhibited by elevated porewater salinities.

After 19 weeks, salinity at 4 ppt and elevated sulfide concentrations were deleterious to overall plant growth. A sulfide-induced growth stimulation in adventitious root production was inhibited at elevated salinities. After 39 weeks, elevated salinity at all concentrations was so stressful that the long-term effects of sulfide became inconsequential. Root respiration under anaerobic conditions was higher under elevated sulfide, but this stimulation was also eliminated at higher salinity. A 12-week hydroponic exposure to elevated salinity and sulfide showed opposite effects of stressor treatment, with salinity stimulating and sulfide inhibiting root ethanol production.

A 3-month field experiment intended to validate the growth chamber experiments supported the sensitivity of P. hemitomon belowground tissue to saltwater flooding, and potential reductions in the capacity to form aerenchymatous tissue for root tip aeration. I concluded from these data that the loss of Panicum hemitomon from the fresh marshes of coastal Louisiana is caused by both reduced growth and a reduced ability to adapt metabolically and morphologically to the highly-reduced edaphic conditions of a saltwater-flooded marsh.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Pahl_dis.pdf 1.00 Mb 00:04:38 00:02:23 00:02:05 00:01:02 00:00:05

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.