Title page for ETD etd-08162006-124346


Type of Document Master's Thesis
Author Holman, Jeremy Dale
Author's Email Address jholma1@lsu.edu
URN etd-08162006-124346
Title Anoxia Tolerance, Anaerobic Metabolism, and the Lack of a Mitochondrial Permeability Transition in the Ghost Shrimp, Lepidophthalmus louisianensis, Schmitt, 1935
Degree Master of Science (M.S.)
Department Biological Sciences
Advisory Committee
Advisor Name Title
Steven C. Hand Committee Chair
Jim H. Belanger Committee Member
William B. Stickle, Jr. Committee Member
Keywords
  • rhodoquinone
  • crustacea
  • calcium uptake
  • apoptosis
Date of Defense 2006-08-01
Availability unrestricted
Abstract
The ghost shrimp, Lepidophthalmus louisianensis, burrows up to meters deep in oxygen-limited marine sediments along the Gulf coast. During low tides these animals are subjected to extended periods of anoxia. The main objective of this study was to assess survival under anoxia and evaluate the physiological mechanisms that underlie the anoxia tolerance of this species.

I observed large specimens of L. louisianensis (>2g) having an LT50 of 64 h under anoxia at 25 C. Smaller specimens (<1g) have a significantly higher LT50 of 113 h under identical conditions (P<0.0001). I measured whole body lactate levels in shrimp exposed to anoxia for up to 72 h, and recorded significant accumulation of this anaerobic end product (ANOVA, P<0.001). I also measured adenylates and arginine phosphate in shrimp exposed to anoxia for up to 48 h, and after a 24-h recovery period. Adenylates were not significantly altered during the anoxia regime, and reductions in arginine phosphate occurred after 12 and 24 h, but returned to normoxic values during recovery (ANOVA, P<0.001). While reserves of arginine phosphate are used to some extent to buffer losses in ATP, substantial contribution to the maintenance of energetic status comes from the high rate of anaerobic glycolysis.

Energized mitochondria isolated from ghost shrimp hepatopancreas possess a pronounced ability to take up exogenous Ca2+ (compared to mitochondria-free controls) as measured by following the external free Ca2+ concentration with the fluorogenic dye Fluo-5N. Importantly, Ca2+ was not released from the mitochondrial matrix at any level of exogenous Ca2+ tested (up to 1.0 mM, in the presence of 5 mM phosphate). Thus, Ca2+ does not stimulate opening of the mitochondrial permeability transition pore, which potentially could help prevent apoptotic and necrotic cell death during extended periods of anoxia. (Supported by NIH grant 1-RO1-GM0-71345-01 and by SIGMA XI GIAR).

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Holman_thesis.pdf 1.13 Mb 00:05:13 00:02:41 00:02:21 00:01:10 00:00:06

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.