Title page for ETD etd-08072012-172506

Type of Document Master's Thesis
Author Wang, Neng
Author's Email Address nwang5@tigers.lsu.edu
URN etd-08072012-172506
Title Boron Composite Nanoparticles for Enhancement of Bio-Fuel Combustion
Degree Master of Science in Chemical Engineering (M.S.Ch.E.)
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Kerry M. Dooley Committee Chair
F. Carl Knopf Committee Member
Sumanta Acharya Committee Member
  • Boron and Iron Composite
  • Core-Shell Structure Particles
  • Boron and Rare Earth Oxide Composite
Date of Defense 2012-07-23
Availability unrestricted
Bio-fuels such as ethanol are good candidates to replace fossil fuels, which are being depleted, and whose combustion is associated with net production of greenhouse gases and other environmental issues. However, bio-fuels have low energy densities and can be subject to incomplete combustion. Boron is a promising additive for bio-fuels in combustion applications. It can increase their overall heat release and reduce ignition temperature, because boron itself is among the highest energy density materials.

In this study, different B/rare earth oxide and B/Fe composite nanoparticles were produced by simple mechanical milling. Also, a new low temperature milling method was developed to produce these nanoparticles. Three different wet chemical syntheses were also used to produce composite B/Fe particles with a boron core. In all cases the goal is to keep more of the boron as elemental (zero valent) prior to combustion. Thermo-gravimetric analysis, inductively-coupled plasma atomic emission spectroscopy, X-ray diffraction, porosimetry and small angle X-ray scattering were performed to examime the composite nanoparticles, determining their elemental (zero valent) boron contents, boron/metal ratios, crystalline structures, surface areas and particle sizes, respectively.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  wangthesis.pdf 1.31 Mb 00:06:03 00:03:07 00:02:43 00:01:21 00:00:06

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.