Title page for ETD etd-07132005-160615


Type of Document Master's Thesis
Author Harris, Melanie Krystle
URN etd-07132005-160615
Title An in-Situ Capping Design for the Remediation of Petroleum Contaminated Sediments
Degree Master of Science in Chemical Engineering (M.S.Ch.E.)
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Danny Reible Committee Co-Chair
K.T. Valsaraj Committee Co-Chair
Clint Willson Committee Member
Keywords
  • remediation
  • petroleum waste
  • contaminated sediments
  • in-situ capping
  • capping
Date of Defense 2005-04-05
Availability unrestricted
Abstract
Historical disposal practices used by oil companies have caused the accumulation of contaminated sediments in their nearby lakes and ponds. These companies are now faced with the challenge of remediating the bodies of water that contain these contaminated sediments. The contaminants that remain in the sediment continue to pose a threat to human health and the environment. For example, high concentrations of polycyclic aromatic hydrocarbons (PAHs), which are still present in the bottom sediments can have toxic effects on aquatic life. One form of remediation for this problem is In-Situ Capping (ISC), which is defined as a method whereby material is used as a covering or cap for placement over contaminated sediment located under a body of water.

This work focuses on evaluating ISC as a remediation method for oil contaminated sediments. Bench-scale laboratory experiments were conducted on oil contaminated sediment samples to observe the effect of consolidation, contaminant migration, gas generation, and ground water migration on the caps ability to contain the contaminants. It was found that, overall, ISC could be used as an effective remediation method for the oil contaminated sediments tested. However, there was some migration of PAHs into the first few centimeters of the cap in all columns tested due to a combination of intermixing during cap placement, non-aqueous phase liquid migration, and retarded transport of certain PAHs. It was also observed that contaminant migration increased when gas bubbles, which simulated gas generated by the contaminated sediment, were injected into the column experiments over an approximately one month period. These results demonstrate that site-specific adjustments to ISC designs are necessary for the cap to most effectively contain contaminant migration in the field.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Harris_thesis.pdf 1.53 Mb 00:07:05 00:03:38 00:03:11 00:01:35 00:00:08

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.