Title page for ETD etd-07102008-140625

Type of Document Master's Thesis
Author Tsai, Cheng-Feng
Author's Email Address ctsai2@lsu.edu, chengfeng_tsai@yahoo.com
URN etd-07102008-140625
Title Application of the HYMAN Model to Evaluate the Water and Salt Budgets in Three Mangrove Sites along Shark River, Everglades
Degree Master of Science in Civil Engineering (M.S.C.E.)
Department Civil & Environmental Engineering
Advisory Committee
Advisor Name Title
Willson, Clinton S Committee Chair
Twilley, Robert R Committee Co-Chair
Chen, Qin Jim Committee Member
  • restoration
  • hydroperiod
  • hydrology model
  • ecosystem
  • CERP
Date of Defense 2008-06-05
Availability unrestricted
Mangrove trees play an important role in the maintenance and sustainability of coastal wetlands due to their ability to adapt and survive in a wide range of saline and tidal conditions. Hydrologic processes (e.g., inundation frequency) and salinity are important regulators controlling the growth and productivity of mangrove forests. To quantify how changes in landscape-level hydrology will influence these regulators in mangrove forests, the hydrology model (HYMAN) was applied to three sites with distinct tidal forcings along the Shark River estuary in the Everglades National Park. HYMAN model uses mass balance equation to determine daily water and salt budgets as the combined effects of inputs from precipitation and tide, and losses through evapotranspiration, seepage, and runoff. Statistical analysis of the surface water depths in each forest was conducted to develop relations as a function of channel water elevations. Other model inputs such as evapotranspiration and seepage were calculated from the observed data. The simulated values of pore water salinity for each site can reasonably match the corresponding observation trends and consist with its distance to the estuary mouth.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Tsai_thesis.pdf 4.71 Mb 00:21:48 00:11:12 00:09:48 00:04:54 00:00:25

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.