Title page for ETD etd-07082013-120440


Type of Document Dissertation
Author Akudo, Christopher
Author's Email Address cakudo1@lsu.edu
URN etd-07082013-120440
Title Bioremediation of Chlorinated Ethanes and Ethenes in Vertical Flow Engineered Wetland Systems
Degree Doctor of Philosophy (Ph.D.)
Department Civil & Environmental Engineering
Advisory Committee
Advisor Name Title
Pardue, John H. Committee Chair
Constant, W. David Committee Member
Moe, William M. Committee Member
White, John R. Committee Member
Nunn, Jeffrey A. Dean's Representative
Keywords
  • dehalobacter
  • numerical model
  • engineered wetland systems
  • dechlorination rates
  • biodegradation
  • groundwater
  • chlorinated ethanes and ethenes
  • dehalococcoides
Date of Defense 2013-06-24
Availability unrestricted
Abstract
Sustainable treatment of chlorinated ethanes and ethenes contaminated groundwater using vertical flow engineered wetland systems were investigated in microcosm and column studies. Experiments on environmental and biogeochemical factors that affect system performance were conducted, and a numerical model involving advection, sorption, and sequential biodegradation was developed to describe the fate and transport of the contaminants of concern in the treatment wetland bed. 1,1-dichloroethane (1,1-DCA) and cis-1,2-dichloroethene (cis-1,2-DCE) were used as the chemicals of interest. The presence of cis-1,2-DCE inhibited dechlorination of 1,1-DCA but cis-1,2-DCE dechlorination was not affected by the presence of 1,1-DCA. Simulation runs showed that the treatment bed sizing was controlled by the 1,1-DCA dechlorination kinetics. Bioaugmentation and biostimulation amendments lead to higher dechlorination rates of both cis-1,2-DCE and 1,1-DCA. Studies conducted with different amounts of peat and sand mixtures to investigate long term effects of organic carbon depletion in engineered wetland systems showed complete biodegradation of 1,1-DCA in all soil mixtures with no significant difference in the rate constants. However, simulation runs showed larger bed size requirement for the lowest amount of peat soil used (5% peat) compared to the other peat soils (25%, 50%, and 100%), and no significant difference in the treatment bed size between the 25%, 50%, and 100% peat soils. Complete biodegradation of cis-1,2-DCE and 1,1-DCA was observed in treatment systems incubated at 10oC, 15oC, and 25oC. However, reduced temperatures resulted in lower dechlorination rates. Maintaining the soil and groundwater pH of an engineered wetland system to near neutral pH by applying alkaline solution was observed to be necessary for biodegradation to occur. The potential for plant assisted remediation of 1,1-DCA through the root system of Scirpus americanus indicated possible plant uptake and enhanced system performance. Microbial analysis of the treatment media using quantitative polymerase chain reaction (qPCR) technique, confirmed the presence of Dehalobacter sp. and Dehalococcoides sp. as well as the functional genes bvcA and tcrA reductase known to mediate the biodegradation of chlorinated ethanes and ethenes to non-toxic end products.
Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Akudo_diss.pdf 981.81 Kb 00:04:32 00:02:20 00:02:02 00:01:01 00:00:05

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.