Title page for ETD etd-07072009-123333


Type of Document Dissertation
Author Bradley, Charles
Author's Email Address cbrad11@lsu.edu
URN etd-07072009-123333
Title States and State Transitions in Low Mass X-Ray Binaries
Degree Doctor of Philosophy (Ph.D.)
Department Physics & Astronomy
Advisory Committee
Advisor Name Title
Hynes, Robert Committee Chair
Frank, Juhan Committee Member
Matthews, James Committee Member
Tohline, Joel Committee Member
Sengupta, Ambar Dean's Representative
Keywords
  • mass transfer
  • black holes
  • accretion disks
  • binary stars
Date of Defense 2009-06-09
Availability unrestricted
Abstract
We investigate the model of a disk/coronal accretion flow into a black hole. We build a numerical code to ascertain whether the inner

regions of an accretion disk in X-ray binaries can transform from a cool standard disk to an advection-dominated flow through the known properties of Coulomb interaction in a two-temperature plasma, taking into account viscous heating, standard radiation processes, and thermal conduction. A hot, diffuse corona covering the whole disk is powered by accretion, but it exchanges energy with the underlying cool disk through radiative interactions and conduction. If the accretion rate is low enough, at some intermediate radius the corona begins to

evaporate the cool disk away, leaving an advective coronal flow to continue towards the hole as consistent with X-ray observations that I

have studied using XMM-Newton and Chandra. We show that if the accretion rate increases sufficiently, complete evaporation does not occur and the cool inner disk remains, proceeding inward to the innermost stable orbit. During spectral transitions an intermediate state has been observed whose nature is unclear, but which shows the presence of cold matter near an X-ray emitting source, along with an additional component that could come from an advective coronal flow. We build a steady-state model that includes these effects and mass exchange between the two flows through evaporation and recondensation during the soft/hard transition and create a "hysteresis" similar to that observed, along with representative spectra for each X-ray state.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  bradley_diss.pdf 3.51 Mb 00:16:14 00:08:20 00:07:18 00:03:39 00:00:18

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.