Title page for ETD etd-06282011-231408

Type of Document Master's Thesis
Author VanZomeren, Christine M.
URN etd-06282011-231408
Title Fate of Mississippi River Diverted Nitrate on Vegetated and Non-Vegetated Coastal Marshes of Breton Sound Estuary
Degree Master of Science (M.S.)
Department Oceanography & Coastal Sciences
Advisory Committee
Advisor Name Title
White, John R. Committee Chair
DeLaune, Ronald D. Committee Member
Galvez, Fernando Committee Member
Wang, Jim. J. Committee Member
  • 15N
  • Spartina patens
  • denitrification
  • Diversion
Date of Defense 2011-05-12
Availability unrestricted
The Caernarvon Diversion meters Mississippi River water into coastal marshes of Breton Sound. Elevated levels of nitrogen in river water have sparked concerns that nutrient loading may affect marsh resilience and belowground biomass, as evidence from several marsh fertilization studies. These concerns resulted from observation that fresh and brackish Breton Sound marshes suffered extensive damage from Hurricane Katrina. The goal of this study is to determine the fate of nitrate (the dominant inorganic nitrogen form in the Mississippi River) in Breton Sound Estuary marshes. We hypothesized that most nitrate would be removed by denitrification and that nitrate loading would not affect belowground biomass. To test this hypothesis, a mass balance study was conducted using 15N-labeled nitrate. Twelve plant-sediment cores were collected from a brackish marsh located proximal to Delacroix, Louisiana. Six cores received dionized water (control), while another six (treatment) received 2 mg L-1 of 15N-labeled potassium nitrate twice a week for three months. A set of three control and treatment cores were destructively sampled after three months and analyzed for 15N in the above and below ground biomass, as well as the soil. The remaining three treatment cores received 20 mg L-1 of 15N-labeled potassium nitrate twice a week for one month, and a similar mass balance was determined to distinguish N removal, including denitrification, surface algae and microbial uptake and incorporation into aboveground and belowground biomass. Twelve hrs after the addition of 2 mg N L-1 water for each flooding event, nitrate levels were below detection (0.014 mg NO3- L-1. In comparison, after 24 hrs, 20 N mg L-1 water column nitrate levels were approximately zero. The 15N analyses determined 68, 65, and 74% of added labeled nitrate as unaccounted for, which represents gaseous losses. The remaining 15N was incorporated in plant and soil compartments. Labeled N data from the 2 mg N L-1 treatment and 20 mg N L-1 treatment suggests denitrification as the major removal pathway for nitrate in Caernarvon Diversion. Comparison of nitrate loss in bayou sediment and marsh soil suggests nitrate removal would be enhanced if diverted Mississippi River water flooded the marshes.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  FinalThesis2.pdf 904.05 Kb 00:04:11 00:02:09 00:01:53 00:00:56 00:00:04

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.