Title page for ETD etd-06222004-162727


Type of Document Dissertation
Author Qi, Zuqiang
Author's Email Address zqi1@lsu.edu
URN etd-06222004-162727
Title Processing, Microstructure and Mechanical Behavior of Nanocomposite Multilayers
Degree Doctor of Philosophy (Ph.D.)
Department Engineering Science (Interdepartmental Program)
Advisory Committee
Advisor Name Title
Efstathios I. Meletis Committee Chair
Guoxiang Gu Committee Member
Ioan Negulescu Committee Member
Mark G. Davidson Committee Member
T. Warren Liao Committee Member
Oscar Hidalgo-Salvatierra Dean's Representative
Keywords
  • multilayers
  • mechanical properties
  • tribological behavior
  • hardness
  • residual stress
  • fracture toughness
Date of Defense 2004-06-10
Availability unrestricted
Abstract
Nanoscale multilayer coatings have high potential for numerous engineering applications because they can exhibit enhanced properties due to nanoscale effects and combine different properties from individual components. At present, scale effects on the mechanical behavior of multilayers are not well understood. Three multilayer nanocomposite systems, namely Al/Al2O3, Ti/TiN, and Cr/a-C, have been synthesized by using a dual-gun e-beam physical vapor deposition, to investigate the effect of layer thickness, the nature of components and their microstructures on the mechanical behavior. The deposited Al and Ti nanolayers were found to have polycrystalline fcc and hcp structure, respectively, the Cr and TiN layers had fine columnar bcc and fcc structure, respectively, and the Al2O3 and C layers were amorphous. Nanoscale effects were observed in all three systems with the metal layer thickness affecting significantly the mechanical behavior. The hardness response of the present systems can be described as a function of the metal layer thickness by a Hall-Petch relationship. A critical Al layer thickness of 40 nm, below which there was no further hardness enhancement, was found for the Al/Al2O3 multilayers. The critical Al layer thickness could be predicted by previous theoretical models. A hardness increase was observed down to a Ti layer thickness of 5 nm for the Ti/TiN system. The strengthening of the Ti/TiN multilayers was consistent with the macroyield maps based on a confined layer slip model. Hardness in the Cr/a-C system showed a continuous increase down to a Cr layer thickness of 20 nm. The fracture toughness of the monolithic ceramic phase was significantly improved by introducing a metal/ceramic multilayered structure. The wear behavior of the present multilayers was mainly controlled by the ceramic phase. The Cr/a-C multilayers achieved a low friction coefficient (~0.1) and low wear rate (~10-5 mm3/N m). The present research shows that properties can be tailored by appropriate selection of layer thickness and nature of individual components.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Qi_dis.pdf 2.36 Mb 00:10:54 00:05:36 00:04:54 00:02:27 00:00:12

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.