Title page for ETD etd-06082007-114534

Type of Document Dissertation
Author McFerrin, Cheri Ann
Author's Email Address cmcfer1@lsu.edu
URN etd-06082007-114534
Title Elementary Reactions Involved in Pollutant-Forming Mechanisms
Degree Doctor of Philosophy (Ph.D.)
Department Chemistry
Advisory Committee
Advisor Name Title
Randall Hall Committee Chair
Barry Dellinger Committee Co-Chair
Bin Chen Committee Member
Robin McCarley Committee Member
Jing Wang Dean's Representative
  • pseudo first-order kinetics
  • experimental rate constant determination
  • ab-initio
Date of Defense 2007-05-03
Availability unrestricted
The reactions of the hydroxyl radical (OH) with molecular chlorine (Reaction 1), methane (Reaction 2), and propane (Reaction 3) have been studied experimentally using a pulsed laser photolysis/pulsed-laser-induced fluorescence technique over wide ranges of temperatures (297-826, 298-1009, and 296-908 K, respectively) and at pressures between 6.68 and 24.15 kPascals. The rate coefficients for these reactions exhibit no dependence on pressure and exhibit positive temperature dependences that can be represented with modified three-parameter Arrhenius expressions within their corresponding temperature ranges: k1 = 3.59 x 10-16T1.35exp(-745K/T)cm3molecule-1sec-1, k2 = 3.82 x 10-19T2.38 exp(-1136K/T)cm3molecule-1sec-1, and k3 = 6.64 x 10-16T1.46 exp(-271K/T)cm3molecule-1sec-1. For the OH + Cl2 reaction, the potential energy surface has been studied using quantum chemical methods which suggests OH + Cl2 HOCl + Cl as the main channel of this reaction.

Density Functional Theory (DFT) along with Quadratic Configuration Interaction

(QCISD(T)//DFT) calculations, with single, double, and triple electronic excitations, for the energetics of formation, stability, and reactivity of ortho-semiquinone, para-semiquinone, and the chloro-phenoxyl radicals have been performed using the 6-31G(d,p) basis set. Formation of these radicals from potential molecular precursors catechol, hydroquinone, and the chloro-phenols is readily achieved under combustion conditions through unimolecular scission of the phenoxyl-hydrogen bond or abstraction of the phenoxyl hydrogen by a hydrogen atom or hydroxyl radical. The resulting radicals are resonance stabilized and resist decomposition and oxidation. The calculations strongly suggest that combustion-generated semiquinone and chloro-phenoxyl radicals are sufficiently stable and resistant to oxidation to be considered persistent in the atmospheric environment.

Semiquinone radicals (ortho- and para-hydroxy substituted phenoxyl radicals and

various derivatives) are suspected to be biologically active and may lead to DNA

damage, pulmonary disease, cardiovascular disease, and liver dysfunction. These

radicals thought to be highly stable with low reactivity due to resonance stabilization

including both carbon-centered and oxygen-centered radical resonance structures and

been reported in cigarette tar. Chloro-phenoxyl radicals, on the other hand, are

implicated in polychlorinated-dibenzodioxin and -dibenzofuran formation mechanisms,

EPA pollutants, in the low temperature sections of hazardous waste combustion.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  dissertation.pdf 1.19 Mb 00:05:30 00:02:49 00:02:28 00:01:14 00:00:06

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.