Title page for ETD etd-04262012-113406


Type of Document Dissertation
Author Singh, Ramesh
Author's Email Address rsingh7@tigers.lsu.edu
URN etd-04262012-113406
Title Structural and Dynamical Properties of Liquid and Solid Phases of Ionic Liquids Confined Inside Nanoporous Materials
Degree Doctor of Philosophy (Ph.D.)
Department Chemical Engineering
Advisory Committee
Advisor Name Title
Hung, Francisco R. Committee Chair
Flake, John Committee Member
Moldovan, Dorel Committee Member
Nandakumar, Krishnaswamy Committee Member
Clayton, Geoff Dean's Representative
Keywords
  • Ionic Liquids
  • Molecular Dynamics
  • confinement
Date of Defense 2012-04-20
Availability unrestricted
Abstract
The purpose of this research is to investigate the physical properties of ionic liquids (ILs) confined inside nanopores of different materials and morphologies. We are interested to study the effect of pore material, morphology and addition of organic solvents on the properties of confined ILs. Understanding the behavior of ILs inside nanopores is relevant to potential applications of these systems in electrochemical double layer capacitors (EDLCs) and dye sensitized solar cells (DSSCs). Such a fundamental understanding is also crucial to optimize the synthesis of hard-templated 1D nanostructures (nanorods, nanotubes, nanowires) based on organic salts, which may be imparted properties (e.g., magnetic, optical) that are desirable for different applications (magnetic hyperthermia cancer treatment, medical imaging, sensors).

In this work we have used molecular dynamics (MD) simulations to investigate systems of representative ILs, [BMIM+][PF6-] and [EMIM+][TFMSI-], inside several model materials (e.g., slit-shaped graphitic and titania pores, carbon nanotubes). Formation of different layers of ions was observed for the confined ILs irrespective of variations in pore size, shape, material and amount of solvent. In all cases, change in pore loading leads to lower densities of ions in the center of the pore. The cations close to the pore walls tend to align with their imidazolium rings parallel to the pore surface in the case of carbon materials, and multiple preferential orientations are observed in the case of titania pores. For all porous materials studied, the dynamics of the ions depend strongly on their location with respect to the surface; bulk-like dynamics are generally observed for the ions in the center regions of the pore, with the dynamics becoming slower as the ions get closer to the pore surfaces. Addition of acetonitrile solvent also shows similar layering behavior for ILs and solvent near the pore wall with less variation in the center of the pore. Preferential orientations of the ions remain unaffected and solvent molecules tend to align flat near the pore surface. The dynamics of the ions and molecules increases linearly with increase in IL molar concentration both near the wall and in the center of the pore.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Singh_abstract.pdf 48.65 Kb 00:00:13 00:00:06 00:00:06 00:00:03 < 00:00:01
  Singh_diss.pdf 4.81 Mb 00:22:16 00:11:27 00:10:01 00:05:00 00:00:25

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.