Title page for ETD etd-04152005-110009


Type of Document Master's Thesis
Author Walker, Thomas
Author's Email Address twalke2@lsu.edu
URN etd-04152005-110009
Title Enhanced Gas Recovery Using Pressure and Displacement Management
Degree Master of Science in Petroleum Engineering (M.S.P.E.)
Department Petroleum Engineering
Advisory Committee
Advisor Name Title
Zaki Bassiouni Committee Chair
Chris White Committee Member
Julius Langlinais Committee Member
Keywords
  • production forecast
Date of Defense 2005-03-29
Availability unrestricted
Abstract
The work contained in this thesis combines two previous enhanced gas recovery techniques; coproduction of water and gas from water-drive reservoirs and waterflooding of low pressure gas reservoirs. These two techniques allow the control of reservoir pressure and sweep efficiency through planed production or injection of water. A recovery optimization method, which is applicable to any gas reservoir, was developed using the concept of pressure and displacement management (PDM).

Two simulation studies were conducted, using Eclipseİ, to investigate recovery optimization by coproduction and waterflooding. From the coproduction study it was determined that the water production rate needed to optimize recovery increases over time, and that accelerating production rate causes the optimum coproduction rate to increase even faster over time. In the case of the waterflooding study it was concluded that the injection rate necessary to obtain a given recovery factor in a given amount of time, with a limited injection volume goes up significantly over time, and that beginning water injection early in the life of a reservoir can have several advantages to performing a waterflood near abandonment.

In addition, a PDM computer model, that can be used for recovery analysis was developed for Excel. Although this application could be adapted to other programs, Excel allows for fast and effective screening of reservoirs amenable to PDM. Two field cases are analyzed in order to demonstrate the idea of recovery optimization and the versatility of the PDM application.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Walker_thesis.pdf 452.38 Kb 00:02:05 00:01:04 00:00:56 00:00:28 00:00:02

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.