Title page for ETD etd-04152005-104826

Type of Document Master's Thesis
Author Gaddam, Venkat Reddy
Author's Email Address vgadda1@lsu.edu
URN etd-04152005-104826
Title Remote Power Delivery for Hybrid Integrated Bio-Implantable Electrical Stimulation System
Degree Master of Science in Electrical Engineering (M.S.E.E.)
Department Electrical & Computer Engineering
Advisory Committee
Advisor Name Title
Pratul K. Ajmera Committee Chair
Ashok Srivastava Committee Member
Jin-Woo Choi Committee Member
  • remote power delivery
  • bio-implantable
  • gastric pacer
  • bio-telemetry
  • inductively coupled
  • electrical stimulation system
Date of Defense 2005-04-05
Availability unrestricted
Bio-implantable devices such as heart pacers, gastric pacers and drug-delivery systems require power for carrying out their intended functions. These devices are usually powered through a battery implanted with the system or are wired to an external power source. In this work, a remote power delivery system (RPDS) is considered as a means to charge rechargeable batteries that power a Bio-implanted Electrical Stimulation System (BESS). A loosely coupled inductive power transmitter and receiver system has been designed to recharge batteries for a bio-implanted gastric pacer.

The transmitter coil is periodically worn around the waist. The receiver coil, rechargeable batteries, battery-charging chip and the chip containing electrical stimulation circuitry form a bio-implanted hybrid integrated microsystem. The link efficiency between a transmitter coil and the implanted receiver coil when the diameters are markedly different is analyzed. A design methodology for RPDS is proposed based on the load and voltage required at the load. An analytical model is developed with the help of simple Matlab coding. A full wave rectifier with a voltage doubler circuit is used for the conversion of ac voltage to the required dc voltage. This dc voltage supplies power to a battery charging chip which is used to safely and appropriately charge a rechargeable Li-ion battery.

For an input supply voltage of 17.67 V rms, operating frequency of 20 kHz and radial coplanar displacement between the coil axes of 7.5 inches, the maximum dc voltage and power obtained across a 65Ω load resistor are 9.65 V and 1.33 W respectively. For a radial coplanar displacement between the coil axes of 6 inches, a 3.7 V nominal, 150 mAh polymer lithium ion battery has been successfully charged in 1 hour and 40 minutes from an initial voltage of 3.39 V to 4.12 V with an input voltage of 19.81 V rms at 20 kHz.

An attempt has been made to model coil parasitics at high frequency. Variations in the load power as a function of frequency and radial coplanar displacement of the axes are examined. Design strategies to optimize power delivery with given geometric constraints are considered.

  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Gaddam_thesis.pdf 1.24 Mb 00:05:44 00:02:56 00:02:34 00:01:17 00:00:06

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.