Title page for ETD etd-04152004-184118

Type of Document Master's Thesis
Author Tisdell, Eric Joseph
Author's Email Address etisde1@lsu.edu
URN etd-04152004-184118
Title Evaluation of the Relationship between Venous Function and Post Exercise Oxygen Consumption Recovery Kinetics
Degree Master of Science (M.S.)
Department Kinesiology
Advisory Committee
Advisor Name Title
Michael Welsch Committee Chair
Arnold Nelson Committee Member
Rebecca Gardner Committee Member
  • epoc
  • recovery kinetics
  • venous
Date of Defense 2004-04-02
Availability unrestricted
Excess post-exercise oxygen consumption (EPOC) has been attributed to metabolic, hemodynamic, neuroendocrine, and pulmonary factors. In one particular study, Barclay (J Appl Physiol 1986;61(3):1084-90) suggested that a lower rate of fatigue and hyperperfusion following a bout of exercise was due to a mechanism other than increased oxygen and substrate delivery. Interestingly, few studies have examined the influence of venous function on EPOC. The purpose of this study was to examine the relationship between measures of vascular function and EPOC. Measures of vascular function and VO2 recovery kinetics were examined in 20 individuals [age=22+2.41 yrs]. Nondominant forearm arterial inflow, venous capacitance and venous outflow were evaluated at rest and after 5 minutes of upper arm occlusion, using strain gauge plethysmography. VO2 recovery kinetics was assessed using gas exchange analysis following a six-minute constant work rate protocol at 60 percent of VO2peak, on a cycle ergometer. The average VO2peak was 33.48+8.22 ml/kg/min (Range: 18.7 to 46.1 ml/kg/min). Recovery half-time (T1/2VO2) and Tao were 17.01+3.51 seconds and 54.45+11.28 seconds, respectively. Resting inflow was 2.77+1.51 ml/100ml/min, reactive hyperemic blood flow was 17.72+3.65 ml/100ml/min, venous capacitance was 2.86+0.72 percent, and venous outflow was 34.19+10.03 ml/100ml/min. Bivariate correlations revealed significant associations between T1/2VO2 and the reactive hyperemic response (r=-0.48, p=0.03) and T1/2VO2 and venous outflow post-occlusion (r=-0.50, p=0.02). In conclusion, these findings suggest an important role of both the arterial and venous circulation on EPOC.
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Tisdell_thesis.pdf 270.99 Kb 00:01:15 00:00:38 00:00:33 00:00:16 00:00:01

Browse All Available ETDs by ( Author | Department )

If you have more questions or technical problems, please Contact LSU-ETD Support.