Title page for ETD etd-01242006-180955


Type of Document Master's Thesis
Author Gupta, Anamika
Author's Email Address agupta3@lsu.edu
URN etd-01242006-180955
Title Feasibility of Supercritical Carbon Dioxide as a Drilling Fluid for Deep Underbalanced Drilling Operations
Degree Master of Science in Petroleum Engineering (M.S.P.E.)
Department Petroleum Engineering
Advisory Committee
Advisor Name Title
Anuj Gupta Committee Chair
John Rogers Smith Committee Member
Julius Langlinais Committee Member
Keywords
  • phase change
  • heat transfer
  • pvt
  • wellflo 7
  • gas drilling
Date of Defense 2005-10-27
Availability unrestricted
Abstract
Feasibility of drilling with supercritical carbon dioxide to serve the needs of deep underbalanced drilling operations has been analyzed. A case study involving underbalanced drilling to access a depleted gas reservoir is used to illustrate the need for such a research. For this well, nitrogen was initially considered as the drilling fluid. Dry nitrogen, due to its low density, was unable to generate sufficient torque in the downhole motor. The mixture of nitrogen and water, stabilized as foam generated sufficient torque but made it difficult to maintain underbalanced conditions. This diminished the intended benefit of using nitrogen as the drilling fluid.

CO2 is expected to be supercritical at downhole pressure and temperature conditions, with density similar to that of a liquid and viscosity comparable to a gas. A computational model was developed to calculate the variation of density and viscosity in the tubing and the annulus with pressure, temperature and depth. A circulation model was developed to calculate the frictional pressure losses in the tubing and the annulus, and important parameters such as the jet impact force and the cuttings transport ratio. An attempt was made to model the temperatures in the well using an analytical model. Corrosion aspects of a CO2 based drilling system are critical and were addressed in this study.

The results show that the unique properties of CO2, which is supercritical in the tubing and changes to vapor phase in the annulus, are advantageous in its role as a drilling fluid. It has the necessary density in the tubing to turn the downhole motor and the necessary density and viscosity to maintain underbalanced conditions in the annulus. The role of a surface choke is crucial in controlling the annular pressures for this system. A carefully designed corrosion control program is essential for such a system. Results of this study may also be important for understanding the flow behavior of CO2 in CO2 sequestration and CO2 based enhanced oil recovery operations.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Gupta_thesis.pdf 704.68 Kb 00:03:15 00:01:40 00:01:28 00:00:44 00:00:03

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.