Title page for ETD etd-01202009-104542


Type of Document Dissertation
Author Jain, Teesta
Author's Email Address tjain1@lsu.edu
URN etd-01202009-104542
Title DNA Topoisomerases I from Pseudomonas Aeruginosa and Vaccinia Virus and Their Use as Drug Targets
Degree Doctor of Philosophy (Ph.D.)
Department Biological Sciences
Advisory Committee
Advisor Name Title
Anne Grove Committee Chair
Craig Hart Committee Member
Marcia Newcomer Committee Member
Patrick DiMario Committee Member
James Ottea Dean's Representative
Keywords
  • DNA binding
  • Topoisomerases
Date of Defense 2008-11-28
Availability unrestricted
Abstract
Pseudomonas aeruginosa encodes a putative topoisomerase with sequence similarity to the type IB topoisomerase enzyme from vaccinia virus. Residues in the active site are conserved, notably Tyr292 which would be predicted to form the transient covalent bond to DNA. The gene encoding the P. aeruginosa topoisomerase I (PAT) was cloned and expressed in E. coli. The enzyme relaxes supercoiled DNA, while a mutant of P. aeruginosa containing a Tyr292 to Phe substitution at the active site was found to be catalytically inert. This is consistent with the role of Tyr in forming the covalent intermediate. Like vaccinia topoisomerase (VT), PAT relaxes DNA in the absence of ATP. Unlike VT, PAT does not relax supercoiled DNA without MgCl2 (or MnCl2) present. In addition, high concentration of NaCl is not able to substitute for MgCl2 as seen for VT. A truncated derivative of the topoisomerase lacking residues 1-98 relaxes DNA in the absence of the N-terminal domain, with both full length and truncated enzyme exhibiting equivalent requirements for divalent cations. Data shows that P. aeruginosa encodes a functional topoisomerase with significant similarity to the type IB enzyme encoded by poxviruses.

Fluoroquinolones are antibacterial agents in clinical use with activity against DNA gyrase and DNA topoisomerase IV. P. aeruginosa is an opportunistic pathogen causing life-threatening diseases. Sparfloxacin, enrofloxacin and norfloxacin fluoroquinolones, are able to inhibit the PAT at high concentrations but other drugs belonging to this family are unable to do so.

VT is 32 KDa and one-third the size of the human topoisomerase 100 KDa. It shares sequence and biochemical similarities with the human topoisomerase. The VT binds duplex DNA with stringent specificity for transesterification at 5`-(C/T) CCTT site, where the 3` phosphate of the incised strand is linked to the Tyr274 of the enzyme to form a covalent cleavage complex. The fluoroquinolone enrofloxacin inhibits relaxation of supercoiled DNA by VT in a Mg2+-dependent fashion. Further results indicate that the mechanism by which enrofloxacin inhibits VT is by preventing formation of the covalent complex which suggest that fluoroquinolones may be structurally optimized to target type IB topoisomerases.

Files
  Filename       Size       Approximate Download Time (Hours:Minutes:Seconds) 
 
 28.8 Modem   56K Modem   ISDN (64 Kb)   ISDN (128 Kb)   Higher-speed Access 
  Jaindiss.pdf 2.52 Mb 00:11:39 00:05:59 00:05:14 00:02:37 00:00:13

Browse All Available ETDs by ( Author | Department )

If you have questions or technical problems, please Contact LSU-ETD Support.